题库链接
给出一张 (n) 个点 (m) 条边有向图,询问最多有多少条不同的路径从 (1) 到 (n) 并且路径长度和 (leq E) 。
(2leq nleq 5000,1leq mleq 200000,1leq Eleq 10^7)
由于要求最多多少条,我们有贪心的思想,选取尽可能短的路径不会差。
那么题目就变成了求这张图 (1rightarrow n) 的最短的 (ans) 条路径,并且路径的长度和 (leq E) 。
就变成了裸的 (k) 短路问题。
由 (f(x)=g(x)+h(x)) ,由于让路径尽可能短,那么估价函数 (h(x)) 就取点 (x) 到 (n) 的最短路就好了。
b站上这道题代码写的丑的 (stl) 会 (MLE) ,像我这种菜鸡肯定过不了,只能手写可并堆了...
//It is made by Awson on 2018.3.1
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 5000, M = 200000, INF = ~0u>>1;
void read(int &x) {char ch; bool flag = 0;for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); }int n, m, vis[N+5]; double dist[N+5], e;
struct node {double f, g; int u;bool operator < (const node &b) const {return f > b.f; }
};
struct mergeable_tree {int ch[1300005][2], dist[1300005], pos, root, cnt; node k[1300005];queue<int>mem;int newnode(node x) {int o; if (!pty()) o = mem.front(), mem.pop(); else o = ++pos;ch[o][0] = ch[o][1] = dist[o] = 0; k[o] = x; return o;}int merge(int a, int b) {if (!a || !b) return a+b;if (k[a] < k[b]) Swap(a, b);ch[a][1] = merge(ch[a][1], b);if (dist[ch[a][0]] < dist[ch[a][1]]) Swap(ch[a][0], ch[a][1]);dist[a] = dist[ch[a][1]]+1; return a;}node top() {return k[root]; }void push(node x) {root = merge(root, newnode(x)); ++cnt; }void pop() {mem.push(root); root = merge(ch[root][0], ch[root][1]); --cnt; }bool empty() {return !cnt; }
}Q;
struct Graph {struct tt {int to, next; double cost; }edge[M+5];int path[N+5], top;void add(int u, int v, double c) {edge[++top].to = v, edge[top].next = path[u], edge[top].cost = c, path[u] = top; }void SPFA() {for (int i = 1; i < n; i++) dist[i] = INF;queue<int>Q; vis[n] = 1; Q.push(n);while (!Q.empty()) {int u = Q.front(); Q.pop(); vis[u] = 0;for (int i = path[u]; i; i = edge[i].next)if (dist[edge[i].to] > dist[u]+edge[i].cost) {dist[edge[i].to] = dist[u]+edge[i].cost;if (!vis[edge[i].to]) Q.push(edge[i].to), vis[edge[i].to] = 1;}}}int Astar() {int ans = 0;node t, tt; t.f = dist[1], t.g = 0, t.u = 1;Q.push(t);while (!Q.empty()) {t = Q.top(); Q.pop();if (t.u == n) {if (e >= t.f) {ans++, e -= t.f; continue; } else break; }for (int i = path[t.u]; i; i = edge[i].next) {tt.g = t.g+edge[i].cost, tt.u = edge[i].to, tt.f = tt.g+dist[edge[i].to];Q.push(tt);}}return ans;}
}g1, g2;void work() {read(n), read(m); scanf("%lf", &e); int u, v; double c;for (int i = 1; i <= m; i++) {read(u), read(v), scanf("%lf", &c), g1.add(u, v, c), g2.add(v, u, c);}g2.SPFA(); writeln(g1.Astar());
}
int main() {work(); return 0;
}
转载于:.html
本文发布于:2024-02-05 02:37:10,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170722065062246.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |