两平面相互转动180°,如果平面1绕平面 2以半径为R的圆 逆时针方向公转,平面曲线的啮合啮合原理:
{ x = x c ( ϕ ) + ρ ( ϕ ) c o s ( ϕ ) y = y c ( ϕ ) + ρ ( ϕ ) s i n ( ϕ ) begin {cases} x=x_c(phi)+rho(phi)cos(phi) \ y=y_c(phi)+rho(phi)sin(phi) \ end {cases} {x=xc(ϕ)+ρ(ϕ)cos(ϕ)y=yc(ϕ)+ρ(ϕ)sin(ϕ)
%% Correction with 2 arcs + lineDelta_r=0.1; % Correction distance d_p=d+Delta_r;
R_ou_p=R_ou-Delta_r;
R_in_p=R_in-Delta_r;gamma=beta_rad-atan(d_p/a_ou);
Delta_theta=asin((R_ou_p+R_in_p)/(2*sqrt(a_ou^2+d_p^2)));
sigma=gamma-Delta_theta;% 2 Arcs + Line for correction
theta_1=[sigma-pi/2:0.01:beta_rad-pi/2];
xf_ou=R_ou_p.*cos(theta_1)+sqrt(a_ou^2+d_p^2)*cos(gamma);
yf_ou=R_ou_p.*sin(theta_1)+sqrt(a_ou^2+d_p^2)*sin(gamma);theta_2=[sigma+pi/2:0.01:beta_rad+pi/2];
xf_in=R_in_p.*cos(theta_2)+sqrt(a_ou^2+d_p^2)*cos(gamma+pi);
yf_in=R_in_p.*sin(theta_2)+sqrt(a_ou^2+d_p^2)*sin(gamma+pi);
beta_rad=deg2rad(140);a_ou=r_0+delta_0*beta_rad^k;
rho_ou=r_0*beta_rad+delta_0/(k+1)*beta_rad^(k+1);d=((rho_ou+r_o/2)^2-a_ou^2)/(rho_ou+r_o/2)/2;
R_ou=rho_ou-d;
R_in=r_o+R_ou;% gamma=beta_rad-atan(d/a_ou);
%% 2 Arcs for correction
theta_1=[gamma-pi:0.01:beta_rad-pi/2];
xf_ou=R_ou.*cos(theta_1)+sqrt(a_ou^2+d^2)*cos(gamma);
yf_ou=R_ou.*sin(theta_1)+sqrt(a_ou^2+d^2)*sin(gamma);theta_2=[gamma:0.01:beta_rad+pi/2];
xf_in=R_in.*cos(theta_2)+sqrt(a_ou^2+d^2)*cos(gamma+pi);
yf_in=R_in.*sin(theta_2)+sqrt(a_ou^2+d^2)*sin(gamma+pi);
本文发布于:2024-02-05 02:44:59,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170722184262295.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |