(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦
Portal
原题目描述在最下面。
求 ∑ i 2 × f ( i ) sum i^2times f(i) ∑i2×f(i)的值。
做法2:把平方拆开暴力算每一项。感觉可以用前缀和的前缀和优化一下,应该也是 O ( n 2 ) O(n^2) O(n2)的。
做法1: a n s = ∑ i = 0 n m i ∗ i ∗ f ( i ) = ∑ i = 0 n m ( ∑ x y i s [ x ] [ y ] ∑ x y i s [ x ] [ y ] ) ∗ f ( i ) = ∑ x y i s [ x 1 ] [ y 1 ] ∑ x y i s [ x 2 ] [ y 2 ] ∑ 多 少 个 矩 形 包 含 ( x 1 , y 1 ) ( x 2 , y 2 ) ans=sum_{i=0}^{nm}i*i*f(i)=sum_{i=0}^{nm}(sum_{xy}is[x][y]sum_{xy}is[x][y])*f(i)=sum_{xy}is[x1][y1]sum_{xy}is[x2][y2]sum_{多少个矩形包含(x1,y1)(x2,y2)} ans=∑i=0nmi∗i∗f(i)=∑i=0nm(∑xyis[x][y]∑xyis[x][y])∗f(i)=∑xyis[x1][y1]∑xyis[x2][y2]∑多少个矩形包含(x1,y1)(x2,y2)
然后就可以 O ( ( n m ) 2 ) O((nm)^2) O((nm)2)枚举任意两个为 1 1 1的点,然后算有多少个矩形包含这两个点,把结果累加起来就是答案了。
不过这题不需要 O ( ( n m ) 2 ) O((nm)^2) O((nm)2)枚举,你只需要枚举一个 1 1 1,另一个 1 1 1的贡献可以通过前缀和算出来。
我的方法比较麻烦,我是 O ( n m ) O(nm) O(nm)枚举 1 1 1,然后另一个 1 1 1的贡献分5个部分算出来:
紫色点是我当前枚举到的一个为 1 1 1的点 ( x , y ) (x,y) (x,y)。规定下面的点 ( i , j ) (i,j) (i,j)是为 1 1 1的点的坐标。
红色区域的贡献为: { ∑ i × j } × ( n − x + 1 ) × ( m − y + 1 ) { sum itimes j}times(n-x+1)times(m-y+1) {∑i×j}×(n−x+1)×(m−y+1);
绿色区域的贡献为: { ∑ ( n − i + 1 ) × ( m − j + 1 ) } × x × y {sum(n-i+1)times(m-j+1)}times xtimes y {∑(n−i+1)×(m−j+1)}×x×y;
蓝色区域的贡献为: { ∑ i × ( m − j + 1 ) } × ( n − x + 1 ) × y {sum itimes(m-j+1)}times(n-x+1)times y {∑i×(m−j+1)}×(n−x+1)×y;
黄色区域的贡献为: { ∑ ( n − i + 1 ) × j } × x × ( m − y + 1 ) {sum (n-i+1)times j}times xtimes(m-y+1) {∑(n−i+1)×j}×x×(m−y+1);
紫色区域的贡献为: x × y × ( n − x + 1 ) × ( m − y + 1 ) xtimes ytimes(n-x+1)times(m-y+1) x×y×(n−x+1)×(m−y+1)。
然后就这样暴力算,这题就没有了。
#include<bits/stdc++.h>
#define lson rt<<1
#define rson rt<<1|1
using namespace std;
typedef long long LL;
const int MXN = 2e3 + 7;
const LL mod = 998244353;
int n, m;
int ar[MXN][MXN];
LL sum[MXN][MXN], sum1[MXN][MXN], sum2[MXN][MXN], sum3[MXN][MXN],sum4[MXN][MXN];
LL up[MXN][MXN], Left[MXN][MXN], Right[MXN][MXN], down[MXN][MXN];
char s[MXN];
int main() {scanf("%d%d", &n, &m);for(int i = 1; i <= n; ++i) {scanf("%s", s+1);for(int j = 1; j <= m; ++j) ar[i][j] = s[j] - '0';}for(int i = 1; i <= n; ++i) {for(int j = 1, tmp; j <= m; ++j) {if(ar[i][j] == 0) tmp = 0;else tmp = i*j;sum[i][j] = sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+tmp;sum[i][j] = (sum[i][j]%mod+mod)%mod;}}for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) sum1[i][j] = sum[i-1][j-1];memset(sum, 0, sizeof(sum));for(int i = 1; i <= n; ++i) {for(int j = m, tmp; j >= 1; --j) {if(ar[i][j] == 0) tmp = 0;else tmp = i*(m-j+1);sum[i][j] = sum[i-1][j]+sum[i][j+1]-sum[i-1][j+1]+tmp;sum[i][j] = (sum[i][j]%mod+mod)%mod;}}for(int i = 1; i <= n; ++i) for(int j = m; j >= 1; --j) sum2[i][j] = sum[i-1][j+1];memset(sum, 0, sizeof(sum));for(int i = n; i >= 1; --i) {for(int j = 1, tmp; j <= m; ++j) {if(ar[i][j] == 0) tmp = 0;else tmp = (n-i+1)*j;sum[i][j] = sum[i+1][j]+sum[i][j-1]-sum[i+1][j-1]+tmp;sum[i][j] = (sum[i][j]%mod+mod)%mod;}}for(int i = n; i >= 1; --i) for(int j = 1; j <= m; ++j) sum3[i][j] = sum[i+1][j-1];memset(sum, 0, sizeof(sum));for(int i = n; i >= 1; --i) {for(int j = m, tmp; j >= 1; --j) {if(ar[i][j] == 0) tmp = 0;else tmp = (n-i+1)*(m-j+1);sum[i][j] = sum[i+1][j]+sum[i][j+1]-sum[i+1][j+1]+tmp;sum[i][j] = (sum[i][j]%mod+mod)%mod;}}for(int i = n; i >= 1; --i) for(int j = m; j >= 1; --j) sum4[i][j] = sum[i+1][j+1];for(int i = 2; i <= n; ++i) {for(int j = 1, tmp; j <= m; ++j) {if(ar[i-1][j] == 0) tmp = 0; else tmp = (i-1)*j;up[i][j] = up[i-1][j] + tmp;up[i][j] %= mod;}}for(int i = 1; i <= n; ++i) {for(int j = 2, tmp; j <= m; ++j) {if(ar[i][j-1] == 0) tmp = 0; else tmp = i*(j-1);Left[i][j] = Left[i][j-1] + tmp;Left[i][j] %= mod;}}for(int i = 1; i <= n; ++i) {for(int j = m - 1, tmp; j >= 1; --j) {if(ar[i][j+1] == 0) tmp = 0; else tmp = (n-i+1)*(m-j);Right[i][j] = Right[i][j+1] + tmp;Right[i][j] %= mod;}}for(int i = n-1; i >= 1; --i) {for(int j = 1, tmp; j <= m; ++j) {if(ar[i+1][j] == 0) tmp = 0; else tmp = (n-i)*(m-j+1);down[i][j] = down[i+1][j] + tmp;down[i][j] %= mod;}}LL ans = 0;for(LL i = 1; i <= n; ++i) {for(LL j = 1; j <= m; ++j) {if(ar[i][j] == 0) continue;ans = (ans + i*j%mod*(n-i+1)%mod*(m-j+1)%mod) % mod;ans = (ans + (sum1[i][j]+up[i][j]+Left[i][j])%mod*(n-i+1)%mod*(m-j+1)%mod)%mod;ans = (ans + (Right[i][j]+down[i][j]+sum4[i][j])%mod*i%mod*j%mod)%mod;ans = (ans + sum2[i][j]*(n-i+1)%mod*j%mod+sum3[i][j]*(m-j+1)%mod*i%mod)%mod;}}printf("%lldn", (ans+mod)%mod);return 0;
}
本文发布于:2024-02-05 05:00:08,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170724700063255.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |