线性注意力的Transformer大模型
2023
TransNormerLLM 是首个基于线性注意力的 LLM。
其中值得格外注意的一项改进是将 TransNormer 的 DiagAttention 替换成线性注意力,从而可提升全局的互动性能。研究者还引入了带指数衰减的 LRPE 来解决 dilution 问题。此外,研究者还**引入了 Lightning Attention(闪电注意力)**这种全新技术,并表示其可以将线性注意力在训练时的速度提升两倍,并且其还能通过感知 IO 将内存用量减少 4 倍。不仅如此,他们还简化了 GLU 和归一化方法,而后者将整体的速度提升了 20%。他们还提出了一种稳健的推理算法,可以在不同的序列长度下保证数值稳定和恒定的推理速度,由此能提升模型在训练和推理阶段的效率。
本文发布于:2024-02-05 06:22:54,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170726164463807.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |