三角函数诱导公式及推导

阅读: 评论:0

2024年2月7日发(作者:)

三角函数诱导公式及推导

三角函数 【2 】引诱公式:所谓三角函数引诱公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数.

常用公式:公式一: 设α为随意率性角,终边雷同的角的统一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二: 设α为随意率性角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)=-cosα

tan(π+α)= tanα

cot(π+α)=cotα

公式三: 随意率性角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)= cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四: 应用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)=-cosα

第1页,-共7页

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五: 应用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)= cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六: π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

推算公式:3π/2 ±α与α的三角函数值之间的关系:

sin(3π/2+α)=-cosα

sin(3π/2-α)=-cosα

cos(3π/2+α)=sinα

cos(3π/2-α)=-sinα

第2页,-共7页

tan(3π/2+α)=-cotα

tan(3π/2-α)=cotα

cot(3π/2+α)=-tanα

cot(3π/2-α)=tanα

引诱公式记忆口诀:“奇变偶不变,符号看象限”.

“奇.偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是斧正弦变余弦,正切变余切.(反之亦然成立)“符号看象限”的寄义是:把角α看做锐角,不斟酌α角地点象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号照样负号.以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α算作锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα.

符号断定口诀:

全,S,T,C,正.这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全体是“-”;第三象限内只有正切和余切是“+”,其余全体是“-”;第四象限内只有余弦是“+”,其余全体是“-”.

也可以如许懂得:一.二.三.四指的角地点象限.全正.正弦.正切.余弦指的是对应象限三角函数为正值的名称.口诀中未说起的都是负值.

“ASTC”反Z.意即为“all(全体)”.“sin”.“tan”.“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值.

另一种口诀:正弦一二切一三,余弦一四紧相连,言之为正.

第3页,-共7页

推导进程:

全能公式推导

sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],

(因为cos2(α)+sin2(α)=1)

再把分式高低同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]

然后用α/2代替α即可.

同理可推导余弦的全能公式.正切的全能公式可经由过程正弦比余弦得到.

三倍角公式推导

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]

高低同除以cos3(α),得:

tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos2(α)+[1-2sin2(α)]sinα

=2sinα-2sin3(α)+sinα-2sin3(α)

=3sinα-4sin3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=[2cos2(α)-1]cosα-2cosαsin2(α)

=2cos3(α)-cosα+[2cosα-2cos3(α)]

=4cos3(α)-3cosα

sin3α=3sinα-4sin3(α)

cos3α=4cos3(α)-3cosα

和差化积公式推导

起首,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb

同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2

第4页,-共7页

同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb

同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2

如许,我们就得到了积化和差的公式:

cosasinb=[sin(a+b)-sin(a-b)]/2

sinasinb=-[cos(a+b)-cos(a-b)]/2

好,有了积化和差的四个公式今后,我们只需一个变形,就可以得到和差化积的四个公式

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分离用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]

sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]

cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]

cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]

三角函数

同角三角函数的根本关系式

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin2(α)+cos2(α)=1

1+tan2(α)=sec2(α)

1+cot2(α)=csc2(α)

同角三角函数关系六角形记忆法

结构以“上弦.中切.下割;左正.右余.中央1”的正六边形为模子.

倒数关系

第5页,-共7页

对角线上两个函数互为倒数;

商数关系

六边形随意率性一极点上的函数值等于与它相邻的两个极点上函数值的乘积.(主如果两条虚线两头的三角函数值的乘积,下面4个也消失这种关系.)由此,可得商数关系式.

平方关系

在带有暗影线的三角形中,上面两个极点上的三角函数值的平方和等于下面极点上的三角函数值的平方.

两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ )/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

二倍角的正弦.余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

tan2α=2tanα/[1-tan2(α)]

tan[(1/2)α]=(sin α)/(1+cos α)=(1-cos α)/sin α

半角的正弦.余弦和正切公式

sin2(α/2)=(1-cosα)/2

cos2(α/2)=(1+cosα)/2

tan2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

全能公式

sinα=2tan(α/2)/[1+tan2(α/2)]

cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

tanα=[2tan(α/2)]/[1-tan2(α/2)]

三倍角的正弦.余弦和正切公式

第6页,-共7页

sin3α=3sinα-4sin3(α)

cos3α=4cos3(α)-3cosα

tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

三角函数的和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数的积化和差公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]

第7页,-共7页

三角函数诱导公式及推导

本文发布于:2024-02-07 16:55:28,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170729612865446.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:公式   得到   象限
留言与评论(共有 0 条评论)
   
验证码:
排行榜

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23