2024年8月5日发(作者:)
曹振卿
一、余切:
余切函数的性质
(1)、定义域:{x
|
x≠
k
π,
k
∈Z}
(2)、值域:实数集R当x→2kπ时,y→∞;当x→(2k+1)π时,y→-∞;
(3)、奇偶性:奇函数,可由诱导公式cot(-x)=-cotx推出
图像关于原点对称,实际上所有的零点都是它的对称中心
(4)、周期性是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;
(5)、单调性在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具
有单调性。
(6)、对称性中心对称:关于点(kπ/2,0)
k
∈Z 中心对称
二、正割 余割:
粗线是正割函数,细线是余割函数
1
y=secx的性质:
(1)定义域,{x|x≠π/2+kπ,k∈Z}
(2)值域,|secx|≥1.即secx≥1或secx≤-1;
(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;
(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.
(5)正割与余弦互为倒数;余割与正弦互为倒数;
(6)正割函数无限趋于直线x=π/2+Kπ;
(7) 正割函数是无界函数;
2
本文发布于:2024-08-05 06:27:54,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/1722810474291867.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |