布伦特方法(Brent‘s method)

阅读: 评论:0

布伦特方法(Brent‘s method)

布伦特方法(Brent‘s method)

基础介绍:

给定给定区间,函数连续且,那么根据介值定理,函数必然在区间内有根。

  1. 二分法:将区间不断二分,使端点不断逼近零点。下一次迭代的区间为或,其中。
  2. 割线法(线性插值):基本思想是用弦的斜率近似代替目标函数的切线斜率,并用割线与横轴交点的横坐标作为方程式的根的近似。即给定两个点,。其割线方程为,那么令,x的值即为下一次迭代的结果。
  3. 逆二次插值法:为割线法的进化版本。使用三个点确定一个二次函数,二次函数与横轴交错的点即为下次迭代的值。但是,其二次函数可能不会和横轴相交,因此做出一点改变,以y值作为自变量。给定三个点,则通过这三个点确定的二次函数为,令y=0,求得

布伦特方法:

初始化区间使得。其中是上次迭代中的根估计值。如果,那么赋值互换(我们认为对应函数值的绝对值较小的点更接近真正的根值)。

每次迭代包含四个点:

  1. :为当前迭代的根估算值;
  2. :对位点,即满足且的值。
  3. :上一次迭代的根估算值,第一次迭代设置为
  4. :上上此迭代的根估算值(不用初始化,在首次迭代过程中,不会用到他来进行判断,结尾进行赋值)。

有以下四个不等式:

  ①

  ②

  ③

 ④

上次迭代为二分法且①为假;上次迭代为二分法且③为假;上次迭代为插值法且②为假;上次迭代为插值法且④为假;以插值法计算的临时值不在和 中间,以上五个条件满足一个,那么本次迭代的值采用二分法,否则采用插值法。

而插值法的选择如下:如果三点各不同,则用二次插值;否则用线性插值。

本次迭代的临时值s作为区间的一个端点,另一个端点在和中选择,二者作为,且满足,。

 

 

 

 

 

 

 

 

 

本文发布于:2024-01-28 15:31:29,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/17064270908415.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:布伦特   方法   method   Brent
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23