注意,说的是空间,那就涉及到三个变量。
{ x = x ( t ) , y = y ( t ) , z = z ( t ) , t ∈ I begin{cases}x= x(t),\y=y(t),\z=z(t), end{cases} t in I ⎩ ⎨ ⎧x=x(t),y=y(t),z=z(t),t∈I
在点 p ( x 0 , y 0 , z 0 ) , ( 即 t = t 0 ) p(x_0,y_0,z_0),(即t = t_0) p(x0,y0,z0),(即t=t0)处的切向量 τ = ( x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) ) boldsymbol{tau} = (x'(t_0),y'(t_0),z'(t_0)) τ=(x′(t0),y′(t0),z′(t0))
切线方程: x − x 0 x ′ ( t 0 ) = y − y 0 y ′ ( t 0 ) = z − z 0 z ′ ( t 0 ) frac{x-x_0}{x'(t_0)} = frac{y-y_0}{y'(t_0)} = frac{z-z_0}{z'(t_0)} x′(t0)x−x0=y′(t0)y−y0=z′(t0)z−z0
法平面方程: x ′ ( t 0 ) ( x − x 0 ) + y ′ ( t 0 ) ( y − y 0 ) + z ′ ( t 0 ) ( z − z 0 ) = 0 x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0 x′(t0)(x−x0)+y′(t0)(y−y0)+z′(t0)(z−z0)=0
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 begin{cases}F(x,y,z)=0\G(x,y,z)=0 end{cases} {F(x,y,z)=0G(x,y,z)=0
当 ∂ ( F , G ) ∂ ( y , z ) ≠ 0 ⇒ { x = x , y = y ( x ) , z = z ( x ) , frac{partial (F,G)}{partial(y,z)} neq 0quad Rightarrowquad begin{cases}x=x,\y=y(x),\z=z(x), end{cases} ∂(y,z)∂(F,G)=0⇒⎩ ⎨ ⎧x=x,y=y(x),z=z(x), 其中 ∂ ( F , G ) ∂ ( y , z ) = ∣ ∂ F ∂ y ∂ F ∂ z ∂ G ∂ y ∂ G ∂ z ∣ frac{partial (F,G)}{partial(y,z)} =left| begin{array}{ccc} frac{partial F}{partial y} & frac{partial F}{partial z} \ frac{partial G}{partial y} &frac{partial G}{partial z} end{array} right| ∂(y,z)∂(F,G)=∣ ∣∂y∂F∂y∂G∂z∂F∂z∂G∣ ∣
在 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)处切向量: τ = ( 1 , y ′ ( x 0 ) , z ′ ( x 0 ) ) boldsymbol{tau} = (1,y'(x_0),z'(x_0)) τ=(1,y′(x0),z′(x0))
切线方程: x − x 0 1 = y − y 0 y ′ ( x 0 ) = z − z 0 z ′ ( x 0 ) frac{x-x_0}{1} = frac{y-y_0}{y'(x_0)} = frac{z-z_0}{z'(x_0)} 1x−x0=y′(x0)y−y0=z′(x0)z−z0
法平面方程: ( x − x 0 ) + y ′ ( x 0 ) ( y − y 0 ) + z ′ ( x 0 ) ( z − z 0 ) = 0 (x-x_0)+y'(x_0)(y-y_0)+z'(x_0)(z-z_0)=0 (x−x0)+y′(x0)(y−y0)+z′(x0)(z−z0)=0
F ( x , y , z ) = 0 F(x,y,z) = 0 F(x,y,z)=0
在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)处法向量: n = ( F x ′ ∣ P 0 , F y ′ ∣ P 0 , F z ′ ∣ P 0 ) boldsymbol{n} = left(F'_{x}|_{P_0}, F'_{y}|_{P_0}, F'_{z}|_{P_0} right) n=(Fx′∣P0,Fy′∣P0,Fz′∣P0)
切平面方程: F x ′ ∣ P 0 ⋅ ( x − x 0 ) + F y ′ ∣ P 0 ⋅ ( y − y 0 ) + F z ′ ∣ P 0 ⋅ ( z − z 0 ) = 0 F'_{x}|_{P_0}cdot(x-x_0) + F'_{y}|_{P_0}cdot (y-y_0) + F'_{z}|_{P_0} cdot (z-z_0) = 0 Fx′∣P0⋅(x−x0)+Fy′∣P0⋅(y−y0)+Fz′∣P0⋅(z−z0)=0
法线方程: x − x 0 F x ′ ∣ P 0 = y − y 0 F y ′ ∣ P 0 = z − z 0 F z ′ ∣ P 0 frac{x-x_0}{F'_{x}|_{P_0}} = frac{y-y_0}{F'_{y}|_{P_0}} = frac{z-z_0}{F'_{z}|_{P_0}} Fx′∣P0x−x0=Fy′∣P0y−y0=Fz′∣P0z−z0
z = f ( x , y ) ⇒ F ( x , y , z ) = f ( x , y ) − z = 0 z = f(x,y)quad Rightarrow quad F(x,y,z) = f(x,y)-z = 0 z=f(x,y)⇒F(x,y,z)=f(x,y)−z=0
在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)处法向量: n = ( f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) , − 1 ) boldsymbol{n} = left(f'_{x}(x_0,y_0), f'_{y}(x_0,y_0), -1 right) n=(fx′(x0,y0),fy′(x0,y0),−1)
切平面方程: f x ′ ( x 0 , y 0 ) ⋅ ( x − x 0 ) + f y ′ ( x 0 , y 0 ) ⋅ ( y − y 0 ) − ( z − z 0 ) = 0 f'_{x}(x_0,y_0)cdot(x-x_0) + f'_{y}(x_0,y_0)cdot (y-y_0) - (z-z_0) = 0 fx′(x0,y0)⋅(x−x0)+fy′(x0,y0)⋅(y−y0)−(z−z0)=0
法线方程: x − x 0 f x ′ ( x 0 , y 0 ) = y − y 0 f y ′ ( x 0 , y 0 ) = z − z 0 − 1 frac{x-x_0}{f'_{x}(x_0,y_0)} = frac{y-y_0}{f'_{y}(x_0,y_0)} = frac{z-z_0}{-1} fx′(x0,y0)x−x0=fy′(x0,y0)y−y0=−1z−z0
{ x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) begin{cases} x = x(u,v)\y = y(u,v)\z=z(u,v) end{cases} ⎩ ⎨ ⎧x=x(u,v)y=y(u,v)z=z(u,v)
当 u = u 0 , v = v 0 u = u_0,v=v_0 u=u0,v=v0时,有点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)
固定 v = v 0 ⇒ u 在 P v=v_0 Rightarrow u在P v=v0⇒u在P的切向量: τ 1 = ( x u ′ , y u ′ , z u ′ ) ∣ P 0 boldsymbol{tau_1} = (x'_u, y'_u, z'_u)|_{P_0} τ1=(xu′,yu′,zu′)∣P0
固定 u = u 0 ⇒ v 在 P u=u_0 Rightarrow v在P u=u0⇒v在P的切向量: τ 2 = ( x v ′ , y v ′ , z v ′ ) ∣ P 0 boldsymbol{tau_2} = (x'_v, y'_v, z'_v)|_{P_0} τ2=(xv′,yv′,zv′)∣P0
曲面的法向量垂直于 τ 1 、 τ 2 ⇒ n = τ 1 × τ 2 = ∣ i j k x u ′ y u ′ z u ′ x v ′ y v ′ z v ′ ∣ P 0 = ( A , B , C ) boldsymbol{tau_1}、boldsymbol{tau_2} Rightarrow boldsymbol{n} = boldsymbol{tau_1} times boldsymbol{tau_2} = left| begin{array}{cccc} boldsymbol{i} & boldsymbol{j} & boldsymbol{k} \ x'_u& y'_u& z'_u \ x'_v& y'_v& z'_v end{array} right|_{P_0} = (A,B,C) τ1、τ2⇒n=τ1×τ2=∣ ∣ixu′xv′jyu′yv′kzu′zv′∣ ∣P0=(A,B,C)
切平面方程: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0) + B(y-y_0) + C (z-z_0) = 0 A(x−x0)+B(y−y0)+C(z−z0)=0
法线方程: x − x 0 A = y − y 0 B = z − z 0 C frac{x-x_0}{A} = frac{y-y_0}{B} = frac{z-z_0}{C} Ax−x0=By−y0=Cz−z0
Γ = { F ( x , y , z ) = 0 G ( x , y , z ) = 0 Gamma = begin{cases}F(x,y,z) = 0\G(x,y,z) = 0 end{cases} Γ={F(x,y,z)=0G(x,y,z)=0消去z
即可得到在xOy
的投影 { ϕ ( x , y ) = 0 z = 0 begin{cases}phi(x,y) = 0\ z= 0 end{cases} {ϕ(x,y)=0z=0
绕谁转,谁不动,另一个变成其和第三个的平方和开根号: 另 2 + 三 2 sqrt{另^2 + 三^2} 另2+三2
具体来说:$$$$
曲线: Γ = { F ( x , y , z ) = 0 G ( x , y , z ) = 0 Gamma = begin{cases}F(x,y,z) = 0\G(x,y,z) = 0 end{cases} Γ={F(x,y,z)=0G(x,y,z)=0,直线: x − x 0 m = y − y 0 n = z − z 0 p frac{x-x_0}{m} = frac{y-y_0}{n} = frac{z-z_0}{p} mx−x0=ny−y0=pz−z0
假设平面1、2方程: { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , 其中 A 1 , B 1 , C 1 与 A 2 , B 2 , C 2 begin{cases} A_1x+B_1y+C_1z+D_1=0 \ A_2x+B_2y+C_2z+D_2=0 end{cases},quad 其中A_1,B_1,C_1与A_2,B_2,C_2 {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0,其中A1,B1,C1与A2,B2,C2不成比例。设L为两个平面的交线,则过该交线的平面束方程设为: μ ( A 1 x + B 1 y + C 1 z + D 1 ) + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 , μ , λ mu (A_1x+B_1y+C_1z+D_1) + lambda(A_2x+B_2y+C_2z+D_2) = 0,quad mu,lambda μ(A1x+B1y+C1z+D1)+λ(A2x+B2y+C2z+D2)=0,μ,λ为参数。
除此之外,对于具体题目,如果说过该交线的平面,但是不是平面1(2)的方程,那么就将上述的 μ mu μ( λ lambda λ)设置为1。
点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)到平面 A x + B y + C z + D = 0 Ax+By+Cz+D = 0 Ax+By+Cz+D=0的距离 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d = frac{left|Ax_0+By_0+Cz_0+Dright|}{sqrt{A^2+B^2+C^2}} d=A2+B2+C2 ∣Ax0+By0+Cz0+D∣
抓住直线的切向量与平面的法向量,那么问题就迎刃而解了。
设函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)的领域内有定义,那么 u ( x , y , z ) u(x,y,z) u(x,y,z)在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)的方向导数的定义应该是:
∂ u ∂ l ∣ P 0 = lim t → 0 + u ( P ) − u ( P 0 ) t = lim t → 0 + u x ′ ( P 0 ) Δ x + u y ′ ( P 0 ) Δ y + u ′ ( P 0 ) Δ z ( Δ x ) 2 + ( Δ y ) 2 + ( Δ z ) 2 = u x ′ ( P 0 ) cos α + u y ′ ( P 0 ) cos β + u ′ ( P 0 ) cos γ = ( u x ′ ( P 0 ) , u y ′ ( P 0 ) , u ′ ( P 0 ) ) ⋅ ( cos α , cos β , cos γ ) frac{partial u}{partial boldsymbol{l}}|_{P_0} = limlimits_{tto 0^+}frac{u(P)-u(P_0)}{t}= limlimits_{tto 0^+}frac{u'_x(P_0)Delta x + u'_y(P_0)Delta y+u'(P_0)Delta z }{sqrt{(Delta x)^2 + (Delta y)^2 + (Delta z)^2}} \= u'_x(P_0)cos alpha + u'_y(P_0)cosbeta +u'(P_0)cosgamma \= (u'_x(P_0), u'_y(P_0),u'(P_0))cdot (cos alpha,cosbeta ,cosgamma ) ∂l∂u∣P0=t→0+limtu(P)−u(P0)=t→0+lim(Δx)2+(Δy)2+(Δz)2 ux′(P0)Δx+uy′(P0)Δy+u′(P0)Δz=ux′(P0)cosα+uy′(P0)cosβ+u′(P0)cosγ=(ux′(P0),uy′(P0),u′(P0))⋅(cosα,cosβ,cosγ)
其中, t = ( Δ x ) 2 + ( Δ y ) 2 + ( Δ z ) 2 , cos α , cos β , cos γ t = sqrt{(Delta x)^2 + (Delta y)^2 + (Delta z)^2}, quad cosalpha,cosbeta,cosgamma t=(Δx)2+(Δy)2+(Δz)2 ,cosα,cosβ,cosγ为方向余弦。
g r a d u ∣ p 0 = ( u x ′ ( P 0 ) , u y ′ ( P 0 ) , u z ′ ( P 0 ) ) boldsymbol{grad} quad u|_{p_0} = (u'_x(P_0) , u'_y(P_0), u'_z(P_0)) gradu∣p0=(ux′(P0),uy′(P0),uz′(P0))
当梯度与方向 l l l同向时,方向导数最大,方向导数为梯度的模: ∣ g r a d u ∣ p 0 ∣ = [ u x ′ ( P 0 ) ] 2 + [ u y ′ ( P 0 ) ] 2 + [ u z ′ ( P 0 ) ] 2 left| boldsymbol{grad} quad u|_{p_0} right| = sqrt{[u'_x(P_0)]^2 + [u'_y(P_0)]^2+ [u'_z(P_0)]^2} ∣gradu∣p0∣=[ux′(P0)]2+[uy′(P0)]2+[uz′(P0)]2
设向量场 A ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k boldsymbol{A}(x,y,z) = P(x,y,z)boldsymbol{i}+Q(x,y,z)boldsymbol{j}+R(x,y,z)boldsymbol{k} A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k
则散度定义为: d i v A = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z div boldsymbol{A} = frac{partial P}{partial x}+ frac{partial Q}{partial y} + frac{partial R}{partial z} divA=∂x∂P+∂y∂Q+∂z∂R,散度为0的场叫做无源场。
设向量场 A ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k boldsymbol{A}(x,y,z) = P(x,y,z)boldsymbol{i}+Q(x,y,z)boldsymbol{j}+R(x,y,z)boldsymbol{k} A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k
则旋度为: r o t A = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ boldsymbol{rotquad A} = left |begin{array}{ccc} boldsymbol{i} & boldsymbol{j} &boldsymbol{k} \ frac{partial}{partial x} &frac{partial}{partial y} &frac{partial}{partial z} \ P &Q &R \ end{array}right| rotA=∣ ∣i∂x∂Pj∂y∂Qk∂z∂R∣ ∣,若旋度为0向量的场叫做无旋场。
本文发布于:2024-01-29 02:06:04,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170646516711951.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |