java fit 16s

阅读: 评论:0

java fit 16s

java fit 16s

对otu的差异分析并不是我们唯一的选择,差异往大的做,可以往往门,纲,目,科做。

今天要做一张长的图,我们可以和别的图一起配合使用会好?

比如这篇文章,还是挺好看的:

下面是一份完整的代码,我仅仅只做了L2水平,也就是门水平,大家修改文件,即可完整做其他水平的气泡图

全套代码和文件,大家修改文件名即可重复结果

链接: 密码:fwk9

setwd("E:/Shared_Folder/HG_kangbing/nobac_noqianheti_chuli")

design =read.table("map_HG_", header=T, row.names= 1,sep="t")

head(design)

setwd("E:/Shared_Folder/HG_kangbing/nobac_noqianheti_chuli/taxa_summary")

L2 =read.table("otu_table_", header=T,  sep="t")

head(L2)

# 过滤数据并排序,只有定义为行名是才可以排序

rownames(design)=design$SampleID2

idx = rownames(design) %in%colnames(L2)

idx

sub_design = design[idx,]

count = L2[,rownames(sub_design)]

head(count)

library(limma)

#下面来筛选差异otu

design.mat = model.matrix(~ 0 +sub_design$SampleType)

colnames(design.mat)=levels(design$SampleType)

#可以同时设置好几组比较

contrast.matrix

#行线性模型拟合

fit

#根据对比模型进行差值计算T-test对数据进行计算

fit2

#贝叶斯检验

fit2

results

summary(results)

x

head(x)

x$levelLF =as.factor(ifelse(x$adj.P.Val < 0.05 & x$logFC > 0,"enriched",ifelse(x$adj.P.Val < 0.05 & x$logFC < 0,"nosig","nosig")))

x$levelB80 =as.factor(ifelse(x$adj.P.Val < 0.05 & x$logFC > 0,"nosig",ifelse(x$adj.P.Val < 0.05 & x$logFC < 0,"depleted","nosig")))

#######计算相对丰度均值

# 转换原始数据为百分比

norm =t(t(count)/colSums(count,na=T))# * 100 # normalization to total 100

head(norm)

norm=as.data.frame(norm)

normB80=norm[1:6]

head(normB80)

normB80$meanB80=apply(normB80,1,mean)

###

normLF=norm[7:12]

head(normLF)

normB80$meanLF=apply(normLF,1,mean)

head(normB80)

normB80[grep(".fq|Row.names",colnames(normB80))]

index = merge(normB80,x,by="row.names",all=F)

head(index)

index2=data.frame(name=index$Row.names,LF=index$meanLF,B80=index$meanB80)

head(index2)

index3=data.frame(name=index$Row.names,LF=index$levelLF,B80=index$levelB80)

head(index3)

###########

library (ggplot2)

library (reshape2)

## 利用reshape2将数据框从宽型重构为长型

tax

head(tax)

colnames(tax)=c("name","break1","fengzu")

#########

fengdu

head(fengdu)

colnames(fengdu)=c("name","break1","fengdu")

#########

#########

## 利用ggplot2的散点图作图

## 样品品映射为x轴,属名映射为y轴

## 丰度映射为气泡大小

######将数据转化#wt2

fengdu$log10=-log10(fengdu$fengdu+0.000001)

head(fengdu)

fengdu$fengzu=tax$fengzu

#注意必须转化为因子

fengdu$break1=factor(fengdu$break1)

fengdu$name=factor(fengdu$name)

#####position = position_dodge(0)设置倾斜度yintercept= 10,xintercept = 10#, group=tax$fengzu

mi=c("red","green","#FFFFB3")

pdf("L2.pdf")

p

geom_point(shape=21,colour="black" )+scale_size_area(max_size= 3)+scale_fill_manual(values =mi)+

#scale_fill_gradient2(low = "red", high = "blue")+

#geom_hline(yintercept = 1)+

geom_vline(xintercept = 1.5,colour="white")+

geom_hline(data=fengdu,aes(yintercept=1.5:94.5),colour="white")

p +=element_text(angle = 90,vjust=-0.05),

< =element_text(size=6),

panel.background =element_rect(fill = "grey90"),

)+

coord_fixed(ratio = 1.2)

dev.off()

本文发布于:2024-02-01 02:41:58,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170672652133292.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:java   fit
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23