深入分析java lock锁的实现原理(看这篇就够了)

阅读: 评论:0

深入分析java lock锁的实现原理(看这篇就够了)

深入分析java lock锁的实现原理(看这篇就够了)

我们知道Java中实现锁的方式有synchronized,lock两种方式,synchronized是基于JVM层面实现。从Java1.5之后,我们可以通过API的方式实现锁了,即lock锁。下面我们深入了解lock是如何实现锁机制的。这里我们以ReentrantLock为例
首先我们看一下类的结构

我们再看看Lock接口中定义了那些方法

void lock();void lockInterruptibly() throws InterruptedException;boolean tryLock();boolean tryLock(long time, TimeUnit unit) throws InterruptedException;void unlock();Condition newCondition();

OK,我们获取锁,释放锁的方法都在这个接口类中定义好了。那么ReentrantLock只需要实现这几个方法就行了。ReentrantLock提供了两种构造方法:

	//我们使用默认无参构造方法用的是非公平锁的方式。public ReentrantLock() {sync = new NonfairSync();}public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();}

sync成员变量是ReentrantLock中定义的一个抽象的静态内部类

	abstract static class Sync extends AbstractQueuedSynchronizer {abstract void lock();final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {if (compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}protected final boolean tryRelease(int releases) {int c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {free = true;setExclusiveOwnerThread(null);}setState(c);return free;}...}Sync有两个实现类NonfairSync(非公平锁),FairSync(公平锁):/*** Sync object for non-fair locks*/static final class NonfairSync extends Sync {private static final long serialVersionUID = 7316153563782823691L;/*** Performs lock.  Try immediate barge, backing up to normal* acquire on failure.*/final void lock() {if (compareAndSetState(0, 1))setExclusiveOwnerThread(Thread.currentThread());elseacquire(1);}protected final boolean tryAcquire(int acquires) {return nonfairTryAcquire(acquires);}}/*** Sync object for fair locks*/static final class FairSync extends Sync {private static final long serialVersionUID = -3000897897090466540L;final void lock() {acquire(1);}/*** Fair version of tryAcquire.  Don't grant access unless* recursive call or no waiters or is first.*/protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {if (!hasQueuedPredecessors() &&compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}}

ReentrantLock实现lock()的方法:

	public void lock() {sync.lock();}

首先我们先分析一下非公平模式下,锁的大体流程:

接下来,我们用源代码一步步分许上面的流程:
假设我们现在有A,B两个线程,同时调用ReentrantLock的lock方法

	final void lock() {if (compareAndSetState(0, 1))setExclusiveOwnerThread(Thread.currentThread());elseacquire(1);}

假设A线程首先执行 if (compareAndSetState(0, 1))

	protected final boolean compareAndSetState(int expect, int update) {// See below for intrinsics setup to support thisreturn unsafepareAndSwapInt(this, stateOffset, expect, update);}

stateOffset即state在内存中的偏移量,这时A线程将state状态成功的从0改为1,接着执行方法

	protected final void setExclusiveOwnerThread(Thread thread) {exclusiveOwnerThread = thread;}

将线程A设置成独享的线程。第一次获取锁的方式很简单,没什么好说的,总结下来就是通过CAS比较AQS中state,如果是0就更新值为1同时将当前线程赋值给exclusiveOwnerThread 结束。
接着线程B执行lock,首先if (compareAndSetState(0, 1))这时state的值为1,更新不成功走到else逻辑中执行acquire(1);

	public final void acquire(int arg) {if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();}

acquire(1)执行if条件中线程B不死心,想再尝试获取一下锁,于是执行了

   protected final boolean tryAcquire(int acquires) {return nonfairTryAcquire(acquires);}final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {if (compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}

如果在执行这个方法前线程A执行完成释放了锁,这时B就能成功获取lock,如果A没有释放锁,返回false,那么tryAcquire失败,执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
这里有两个方法,我们先分析addWaiter()

	private Node addWaiter(Node mode) {Node node = new Node(Thread.currentThread(), mode);// Try the fast path of enq; backup to full enq on failureNode pred = tail;if (pred != null) {node.prev = pred;if (compareAndSetTail(pred, node)) { = node;return node;}}enq(node);return node;}

第一步先创建了一个Node,我们先看看这个Node的数据结构有啥东西:

static final class Node {/** Marker to indicate a node is waiting in shared mode */static final Node SHARED = new Node();/** Marker to indicate a node is waiting in exclusive mode */static final Node EXCLUSIVE = null;/** waitStatus value to indicate thread has cancelled */static final int CANCELLED =  1;/** waitStatus value to indicate successor's thread needs unparking */static final int SIGNAL    = -1;/** waitStatus value to indicate thread is waiting on condition */static final int CONDITION = -2;/*** waitStatus value to indicate the next acquireShared should* unconditionally propagate*/static final int PROPAGATE = -3;volatile int waitStatus;volatile Node prev;volatile Node next;volatile Thread thread;Node nextWaiter;}

这是个双向链表的数据结构,我们在AQS类中的成员变量中也看到了,头节点与尾节点

    private transient volatile Node head;private transient volatile Node tail;

那么再来看addWaiter方法好理解了,首先将我们线程B封装成一个Node对象,此时tail节点为null,所以执行enq(node)方法

	private Node enq(final Node node) {for (;;) {Node t = tail;if (t == null) { // Must initializeif (compareAndSetHead(new Node()))tail = head;} else {node.prev = t;if (compareAndSetTail(t, node)) {t.next = node;return t;}}}}

这个方法里有个自旋逻辑,第一次自旋,如果tail==null,先构建一个新的node, 让tail和head节点都指向该node对象

第二次自旋tail != null, 将线程B的node节点的前置节点设置成head(tail)节点,然后进行CAS操作将tail节点设置成线程B的node节点

所以一句话总结enq方法就是完成双向链表的初始化的,并将节点添加到尾部。那么如果这时第三个线程来执行
addWaiter方法,tail就不为null, 执行代码块

	Node pred = tail;if (pred != null) {node.prev = pred;if (compareAndSetTail(pred, node)) { = node;return node;}}

这段代码就是将node添加到链表尾部,并将tail指向新的node。

接着下一步执行:

	final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;for (;;) {final Node p = node.predecessor();if (p == head && tryAcquire(arg)) {setHead(node);p.next = null; // help GCfailed = false;return interrupted;}if (shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}}

又是一个自旋,好吧,一步步分析。第一次自旋获取node的前置节点p,如果节点p是head节点,线程B想:“呀~我是第一个节点,不行我要再尝试获取一下锁,万一人家已经释放锁了,我就不用park了”,tryAcquire返回true,成功获取锁,这时设置head

	private void setHead(Node node) {head = node;node.thread = null;node.prev = null;}

如果获取失败,那咋办呢,线程不能一直占着CPU资源不干事呀?没办法那就挂起线程,把CPU释放了,安静的排队去。。。

	private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {int ws = pred.waitStatus;if (ws == Node.SIGNAL)return true;if (ws > 0) {//循环将状态>0(CANCELLED)的前置节点从链表中移除do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0); = node;} else {线程B的pre节点为head,head的waitStatus为0所以走这段逻辑,做CAS操作将head的waitStatus设置为SIGNAL的值-1compareAndSetWaitStatus(pred, ws, Node.SIGNAL);}return false;}

第一次自旋调用shouldParkAfterFailedAcquire返回false,接着开始第二次自旋执行这时head的waitStatus== Node.SIGNAL直接返回true。这时才挂起B线程

	private final boolean parkAndCheckInterrupt() {LockSupport.park(this);return Thread.interrupted();}

至此,线程B终于安静的躺在链表中,等待线程A执行完成释放锁后,将它给唤醒!
那么,线程A执行完成如何释放锁资源的呢,别着急,接着往下探。

	public final boolean release(int arg) {if (tryRelease(arg)) {Node h = head;if (h != null && h.waitStatus != 0)unparkSuccessor(h);return true;}return false;}protected final boolean tryRelease(int releases) {int c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {free = true;setExclusiveOwnerThread(null);}setState(c);return free;}

相信现在大家看到这里,对上面的代码,应该没有什么疑惑了把,如果还有,那就将上面的分析再看一遍?。重点看一下唤醒线程的方法

	 private void unparkSuccessor(Node node) {//head的waitStatus为-1,现将-1设置为0int ws = node.waitStatus;if (ws < 0)compareAndSetWaitStatus(node, ws, 0);//获取线程B的node节点Node s = ;if (s == null || s.waitStatus > 0) {s = null;//从后往前找waitStatus小于0的节点for (Node t = tail; t != null && t != node; t = t.prev)if (t.waitStatus <= 0)s = t;}if (s != null)LockSupport.unpark(s.thread);//唤起线程}

好了,到这里已经带着大家把Lock的整个锁的获取与释放全部分析了一遍,希望对家有帮助。如果有什么不对的地方,欢迎指正。
若要转载,请表明出处!

本文发布于:2024-02-01 18:10:06,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170678236238511.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:这篇   原理   就够了   java   lock
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23