【论文记录】Differentially Private Empirical Risk Minimization with Input Perturbation

阅读: 评论:0

【论文记录】Differentially Private Empirical Risk Minimization with Input Perturbation

【论文记录】Differentially Private Empirical Risk Minimization with Input Perturbation

Problem Definition and Preliminary

  • privacy concerns
    data privacy : when the data contributors release their own data to the database
    model privacy : when the database publishes the learned model to the model user
  • 采用的方法
    针对 model privacy : ( ε varepsilon ε, δ delta δ)-differential privacy
    针对 data privacy : ( ε varepsilon ε, δ delta δ)-local differential privacy ,,, (注 : 此种定义通常用在 under the non-interactive setting)
  • how to assess utility
    借助 empirical excess risk ,,, the empirical excess risk of M mathcal M M that randomly outputs w mathcal w w is defined as , J ( w ; D ) − J ( w ∗ ; D ) J(mathcal w ,; D)-J(mathcal w^* ; D) J(w;D)−J(w∗;D)




Ref

Fukuchi, K., Tran, Q. K., & Sakuma, J. (2017, October). Differentially private empirical risk minimization with input perturbation. In International Conference on Discovery Science (pp. 82-90). Springer, Cham.

本文发布于:2024-02-04 23:53:59,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170719270260911.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23