他人总结:[link] , [link]
Various threat models for different adversarial actors (malicious / honest-but-curious) :
Various technologies along with their characteristics :
While secure multi-party computation and trusted execution environments offer general solutions to the problem of privately computing any function on distributed private data, many optimizations are possible when focusing on specific functionalities. (e.g. Secure aggregation, Secure shuffling, Private information retrieval)
Local differential privacy
在每个client把数据共享给服务器之前就对各自的数据应用差分隐私的处理。但由于对每个client的数据都进行了加噪,尽管很好的保护了隐私,但很大地影响了服务器收集到的数据集的utility。
Distributed differential privacy
每个client首先计算和编码一个minimal (application specific) focused report,然后把encoded reports发送给secure computation function,它的输出满足differential privacy。选择不同的secure computation function可以应对不同的threat models。Distributed differential privacy比Local differential privacy提供更好的utility,但它依赖于不同的setups和更强的假设。
Distributed differential privacy 模型举例 : Distributed DP via secure aggregation (通过安全聚合来确保central server获得聚合的结果,同时确保不会将各设备和参与者的参数暴露给central server)、Distributed DP via secure shuffling(由secure shuffler把每个client从LDP协议得到的数据进行随机化,最后再发送给central server)。
Hybrid differential privacy
根据用户不同的信任偏好对他们进行分类,再对不同的分组应用不同的模型。
Central Differential Privacy
user-level differential privacy used in FL’s iterative training process.
具体过程类似于之前看过的"-2- Deep Learning with Differential Privacy".
To limit or eliminate the information that could be learned about an individual from the iterates.
Concealing the Iterates
在TEE模型下可以对参与者隐藏模型的 iterates (the newly updated versions of the model after each round of training)
Repeated Analyses over Evolving Data , Preventing Model Theft and Misuse
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., … & d’Oliveira, R. G. (2019). Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977.
本文发布于:2024-02-04 23:54:07,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170719273060913.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |