背景:trade-off
解决方法:limiting the contributions of individual users in order to reduce the sensitivity.
举例 · 从数学原理上解释应用差分隐私时需要 trade-off 的原因 :
S = { x 1 , x 2 , . . . , x n } mathcal{S} = { x_1,x_2,...,x_n } S={x1,x2,...,xn} quad g ( S ) = ∑ i x i g( mathcal S ) = sum_ix_i g(S)=∑ixi quad 由于 Δ g Delta g Δg发散 , 故设置bound T , 采用 g T ( S ) = ∑ i m i n ( x i , T ) g_T( mathcal S ) = sum_i min(x_i,T) gT(S)=∑imin(xi,T) , 则使 Δ g T = T Delta g_T=T ΔgT=T
quadquadquadquad
设置 bound 的方法:根据 F-utility 导出 τ 0 ∈ ( 0 , 1 ] tau_0in(0,1] τ0∈(0,1]
背景 : previous methods, such as adjacency matrix, hierarchical random graph, quadtree, etc are often applicable in small-scale graph datasets. However, real graphs are generally large and sparse, leading to high computational expense.
算法框架 :1.Fast-unfolding community detection algorithm ,,, 2.The framework of differential privacy based on hierarchical representation
Fast-unfolding algorithm : 不断划分 , community使得划分后的整个网络的模块度 Q=··· 不断增大。具体的算法过程为:
1.初始化,将每个点划分在不同的社区中;
2.对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时的模块度,判断划分前后的模块度的差值ΔQ是否为正数,若为正数,则接受本次的划分,若不为正数,则放弃本次的划分;
3.重复以上的过程,直到不能再增大模块度为止;
4.构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执行步骤2和步骤3,直到社区的结构不再改变为止。
Hierarchical Structure : hierarchical graph中的叶子结点为原图中的结点,非叶子结点的权值由 P r = e r / ( n L r ⋅ n R r ) P_r=e_r/(n_{L_r}·n_{R_r}) Pr=er/(nLr⋅nRr)计算。举例如 :
a hierarchical graph with higher L L L is a better representation of the network structure than those with lower likelihoods.
computing the probabilities stored in internal nodes with applying Laplace noise.
本文发布于:2024-02-04 23:54:24,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170719275960914.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |